PHYSICAL CHEMISTRY

DPP No. 40

Total Marks: 26

Max. Time: 28 min.

Topic: Chemical Equilibrium

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.6	(3 marks, 3 min.)	[18, 18]
Subjective Questions ('-1' negative marking) Q.7 to Q.8	(4 marks, 5 min.)	[8, 10]

- 1. $CH_3-CO-CH_3(g) \rightleftharpoons CH_3-CH_3(g) + CO(g)$ Initial pressure of CH₂COCH₂ is 100 mm. When equilibrium is set up, mole fraction of CO(g) is 1/3. Hence value of $K_{_{\scriptscriptstyle D}}$ for given reaction is : (A) 100 mm (C) 25 mm (D) 0.6 mm (B) 50 mm
- 2. The degree of dissociation of N_2O_4 (α) obeying the equilibrium, $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, is approximately related to the presure at equilibrium by :
 - (B) $\alpha \propto \frac{1}{\sqrt{P}}$ (C) $\alpha \propto \frac{1}{P^2}$ (D) $\alpha \propto \frac{1}{P^4}$ (A) $\alpha \propto P$
- 3. Two moles of HI were heated in a sealed tube at 440°C till the given equilibrium was reached. HI was found to be 20% decomposed. The equilibrium constant for dissociation is: $2HI(g) \iff H_2(g) + I_2(g)$
 - (B) $\frac{1}{32}$ (A) $\frac{1}{16}$ (D) $\frac{1}{128}$
- In the following reaction, $3A(g) + B(g) \rightleftharpoons 2C(g) + D(g)$, 4. Initial moles of B is double of A. At equilibrium, moles of A and C are equal. Hence % dissociation of B is : (B) 20% (C) 40% (D) 5%
- 5. For the equilibrium N₂O₄ \Longrightarrow 2NO₂ in gaseous phase, NO₂ is 50% of the total volume when equilibrium is set up. Hence percent of dissociation of N₂O₄ is :

(C) 66.66%

(D) 33.33%

- PCI_s is 40% dissociated according to the following reaction, when equilibrium pressure is 2 atm. It will be 6.
- 80% dissociated, when equilibrium pressure is approximately : $PCl_3(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ (A) 0.2 atm (B) 0.5 atm (C) 0.3 atm (D) 0.6 atm

(B) 25%

- 7. The equilibrium constant for the following reaction , $H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g)$ is 1.6×10^5 at 1024 K. Find the equilibrium pressure of all gases if 10 bar of HBr is introduced into a sealed container at 1024 K
- initially. 8. At a certain temperature, the equilibrium constant (K₂) is 9/4 for the reaction :
 - If we take 10 mole of each of the four gases in a one-litre container, what would be the equilibrium mole percent of H₂ (g) ?

 $CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$

(A) 50%

Answer Kev

DPP No. #40

1. (B) 2.

3. (C)

(A)

(D)

30%

6. (A) 7.

 $p_{H_2} = 2.5 \times 10^{-2} \text{bar}$; $p_{Br_2} = 2.5 \times 10^{-2} \text{ bar}$; $p_{HBr} \approx 10 \text{ bar}$

ints & Solutions

DPP No. # 40

3.

2HI
$$\iff$$
 H₂ + I₂

Initial 2moles

At eqm.
$$2 - \frac{20}{100} \times 2$$
 0.2

0.2

$$= 2 - 0.4 = 1.6$$

$$K = \frac{[H_2][I_2]}{[HI]} = \frac{0.2 \times 0.2}{(1.6)^2} = \frac{1}{64}$$

7.

Intial pressures

At equilibrium

$$\begin{array}{ccc}
H_2(g) & + & Br_2(g) & \Longrightarrow & 2HBr(g) \\
0 & 0 & & 10
\end{array}$$

10.0 bar

(10.0-p)

$$K_p = \frac{p^2_{HBr}}{p_{H_2} \times p_{Br_2}}$$

$$1.6 \times 10^5 = \frac{(10-p)^2}{(p/2)(p/2)}$$

Taking square root of both sides

$$4\times10^2=\frac{10-p}{p/2}$$

200 p = 10 - p;
$$p = \frac{10}{201} bar$$

$$p_{H_2} = p/2 = \frac{1}{2} \bigg(\frac{10}{201} \bigg) bar = 2.5 \times 10^{-2} \, bar \; ; \; P_{Br_2} = p/2 = 2.5 \times 10^{-2} \; bar \; ; \qquad P_{HBr} = 10 - p \approx 10 \; bar \; .$$

8. We have.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

 $10 - x 10 - x 10 + x 10 + x$

Moles at eqb.

or concentration at eqb.

where x is the number of moles of each reactant changed to the products at equilibrium.

$$K = \frac{(10+x)^2}{(10-x)^2} = 9/4$$
 (given) or $\frac{10+x}{10-x} = 3/2$; $x = 2$

Mole percent of H₂ (g) at equilibrium = $\frac{10 + x}{40} \times 100 = 30$

